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Summary

• Using 37Cl in molten chloride fast reactors (MCFR) 

rather than natural chlorine has two advantages
– Better neutron economy

– Better repository performance

• Creates economic and environmental incentives for 

enriching 37Cl for fuel and recovery with recycle of 
37Cl from wastes back to MCFRs
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Molten Chloride Fast Reactor Characteristics
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• Fuel dissolved in a chloride salt (Uranium, Sodium, etc.)

• Very hard neutron spectrum that enables in some designs 

“breed and burn” fuel cycles

– Startup core with plutonium or enriched uranium

– Refuel by adding depleted uranium to fuel with direct disposal of 

fraction of fuel with uranium and plutonium

– Simplest possible fuel cycle

• Two isotopes of chlorine—chlorine-35 consumes more 

neutrons so better performance with chlorine-37



Two Classes of MCFRs Being Developed

4

• MCFR with the reactor being a wide 

space in the loop

– TerraPower/Southern with Pu/U fuel

– Elysium with Pu/U fuel

– SINAP (China) with 233U/Th fuel

• Molten chloride fuel salt in tubes with 

clean fluoride salt coolant: Moltex

– Clean salt coolant loop

– Similarities to sodium fast reactor except 

simple to process fuel—pour out of tubes
TerraPower/Southern



Chlorine

Isotopic

Separation 

The Chlorine-37 Fuel Cycle

Natural 

Chlorine 

Feedstock 

(Multiple 

Options)

Cl-37

Molten 

Chloride 

Fast Reactor

Salt 

Treatment
Repository 

Disposal

Cl-37Chlorine Depleted in 

Cl-37 To Market

Cl-37

Chloride-Free 

Phosphate or 

Borosilicate 

HLW

5



Why Use Chlorine-37 in a 

Molten Chloride Fast Reactor

Natural Chlorine: 76 % 35Cl and 24 % 37Cl (Molar Ratios)
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Incentives for Isotopic Separation

• Using 37Cl in MCFR avoids two 35Cl reactions
– Neutron, gamma 

– Neutron, proton (significant nuclear cross section uncertainties)

• Enables harder neutron spectrum—chlorides are the 

largest fraction of the fuel salt

• For U/Pu MCFRs, reduce 35Cl by an order of 

magnitude but no large incentive for very highly 

enriched 37Cl
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Isotopically Separating 

Chlorine-37 from Chlorine-35
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Multiple Isotopic Separation Options

• No public detailed review of options

• Likely near-term option is gas centrifuge using 

existing (uranium) enrichment plants

• Need chloride-containing gas
– Cl2 gas complicates enrichment because three component 

separation: 35Cl-35Cl, 35Cl-37Cl and 37Cl-37Cl

– Potential gaseous compounds with single chloride atom to 

avoid three component separation: methyl chloride (CH3Cl) 

and hydrogen chloride (HCl)
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Low-cost Commercial Feedstock Has Economic Implications

• Unlike natural uranium, very low-cost chlorine feedstock options

• Cheap feedstock implies no need to maximize extraction of 37Cl so 

less enrichment required. Assume: Nominal 90% 37Cl product and  

Nominal 15% 37Cl tails

• Relative enrichment required
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Tails Assay (% 37Cl) Relative SWU

15 1

10 1.17

5 1.46

1 2.17

0.5 2.5

Big Favorable Economic Impact



Recycle of Chlorine-37 from Waste while 

Producing High-Quality High-Level Waste
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In Repositories, Chlorine-36 is a Risk Contributor

• Chemistry determines 

what can escape from a 

repository

• Fission products, not 

actinides, control risk in 

most repositories

• Chlorides are soluble in 

water, that is why the 

ocean is full of salt (NaCl)

• If no 35Cl in reactor, no 36Cl 

in waste
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Cl-36 (Red Line)



• Chloride waste forms have low performance compared to 

phosphate and borosilicate waste forms because of tendency 

of chlorides to dissolve in water.

• Incentives to remove chlorides from waste—even if there 

was no radioactive form of chlorine

• Added advantage for MCFR with 37Cl to recover valuable 

isotopically-separated 37Cl.

Large Incentives to Remove Chlorides from Waste
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• Convert to generally-accepted high-level-waste form

– Iron Phosphate

– Borosilicate glass.

• Add compound to convert from chloride to oxide waste form with 
volatile chloride existing to off-gas system

– HCl

– PbCl2

• Recover volatile chloride in off-gas system as sodium chloride and 
recycle to MCFR

Process Options to Remove Chloride from Waste
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Remove Chloride

3NaCl + H3PO4 → 

3HCl + Na3PO4

Aqueous Scrubber

HCl + NaOH → H2O  + NaCl
Fe2O3

↓
Chloride

Feed

Iron Phosphate

High-Level Waste

Example: Convert Waste to Phosphate Waste Form

↑HCl 

H3PO4

↓

Relatively Simple Process



Conclusions
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• Large incentives for Chlorine-37 fuel cycle in MCFR

– Higher breeding ratio in the reactor and smaller fissile inventory

– Reduce inventory of chlorine-36 in the repository that may control long-
term repository risk

– Better final repository waste forms by conversion to oxide forms

• Multiple isotopic separation technologies for chlorine isotopes

– Gas centrifuge is the near-term option

– No systematic study of options in public literature

• Large incentives to use demonstrated and accepted waste forms 
where processes enable recycle of chlorine-37

Conclusions
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Remove Chloride

2NaCl + PbO → 

PbCl2 + Na2O

Aqueous Scrubber

PbCl2 + 2NaOH → Pb(OH)2 + 2NaCl

Lead Oxidation

2Pb + O2 → 2PbOOxygen→

B2O3

↓
Cl 

Feed

Borosilicate

HLW

Excess Lead Oxide Removal

& Silicate Glass Formation

C + 2PbO → Pb + CO2

↑CO2PbCl2↑Pb(OH)2↓
C

↓
Frit

↓

PbO↑ ↓Pb

Convert Waste to Borosilicate Glass

Less Developed But Capable of Processing More Difficult Wastes



Market Basis for All Salt Systems: Higher 

Temperature Delivered Heat to Power Cycle

Coolant Average Core Inlet 

Temperature (°C)

Average Core Exit 

Temperature (°C)

Ave. Temperature of 

Delivered Heat (°C)

Water 270 290 280

Sodium 450 550 500

Helium 350 750 550

Salt 600 700 650
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